High Resolution Imaging of Temporal and Spatial Changes of Subcellular Ascorbate, Glutathione and H2O2 Distribution during Botrytis cinerea Infection in Arabidopsis
نویسندگان
چکیده
In order to study the mechanisms behind the infection process of the necrotrophic fungus Botrytis cinerea, the subcellular distribution of hydrogen peroxide (H₂O₂) was monitored over a time frame of 96 h post inoculation (hpi) in Arabidopsis thaliana Col-0 leaves at the inoculation site (IS) and the area around the IS which was defined as area adjacent to the inoculation site (AIS). H₂O₂ accumulation was correlated with changes in the compartment-specific distribution of ascorbate and glutathione and chloroplast fine structure. This study revealed that the severe breakdown of the antioxidative system, indicated by a drop in ascorbate and glutathione contents at the IS at later stages of infection correlated with an accumulation of H₂O₂ in chloroplasts, mitochondria, cell walls, nuclei and the cytosol which resulted in the development of chlorosis and cell death, eventually visible as tissue necrosis. A steady increase of glutathione contents in most cell compartments within infected tissues (up to 600% in chloroplasts at 96 hpi) correlated with an accumulation of H₂O₂ in chloroplasts, mitochondria and cell walls at the AIS indicating that high glutathione levels could not prevent the accumulation of reactive oxygen species (ROS) which resulted in chlorosis. Summing up, this study reveals the intracellular sequence of events during Botrytis cinerea infection and shows that the breakdown of the antioxidative system correlated with the accumulation of H₂O₂ in the host cells. This resulted in the degeneration of the leaf indicated by severe changes in the number and ultrastructure of chloroplasts (e.g. decrease of chloroplast number, decrease of starch and thylakoid contents, increase of plastoglobuli size), chlorosis and necrosis of the leaves.
منابع مشابه
The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves.
Infection of tomato leaves with the necrotrophic fungus Botrytis cinerea resulted in substantial changes in enzymatic and non-enzymatic components of the ascorbate-glutathione cycle as well as in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST), and l-galactono-gamma-lactone dehydrogenase (GLDH) activities. In the initial phase of the 5 d experiment CuZ...
متن کاملFusion of LST products of ASTER and MODIS Sensors Using STDFA Model
Land Surface Temperature (LST) is one of the most important physical and climatological crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...
متن کاملResistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection
The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, "Pingli-5" (V. sp. [Qinli...
متن کاملIdentification of Arabidopsis accession with resistance to Botrytis cinerea by natural variation analysis, and characterization of the resistance response
Botrytis cinerea is a ubiquitous necrotrophic fungal pathogen that infects over 200 different plant species. We have analyzed 17 Arabidopsis ecotypes for natural variations in their susceptibility to B. cinerea, and found compatible and incompatible Arabidopsis–Botrytis interactions. We determined that Arabidopsis ecotype Ler is resistant to 5 B. cinerea isolates used in this study. To further ...
متن کاملNumerical and Synoptic Study of Emission, Transport and Identify Potential Sources of a Severe Dust Storm Over Middle East
One of the powerful tools in dust storms analysis that have recently found extensive application is atmospheric-chemistry numerical modeling. Spatial and temporal distribution of Middle Eastern dust for a severe dust event during 4-8 July 2009 was analyzed by Weather Research and Forecasting with Chemistry (WRF/Chem) model simulations and remote sensing observations. The HYSPLIT model is applie...
متن کامل